EXPONENT RULES
Exponent rules, laws of exponent and examples.
What is an exponent
The base a raised to the power of n is equal to the multiplication of a, n times:
a n = a × a × ... × a
n times
a is the base and n is the exponent.
Examples
31 = 3
32 = 3 × 3 = 9
33 = 3 × 3 × 3 = 27
34 = 3 × 3 × 3 × 3 = 81
35 = 3 × 3 × 3 × 3 × 3 = 243
Exponents rules and properties
Rule name | Rule |
---|---|
Product rules | a n ⋅ a m = a n+m |
a n ⋅ b n = (a ⋅ b) n | |
Quotient rules | a n / a m = a n-m |
a n / b n = (a / b) n | |
Power rules | (bn)m = bn⋅m |
bnm = b(nm) | |
m√(bn) = b n/m | |
b1/n = n√b | |
Negative exponents | b-n = 1 / bn |
Zero rules | b0 = 1 |
0n = 0 , for n>0 | |
One rules | b1 = b |
1n = 1 | |
Minus one rule | |
Derivative rule | (xn)' = n⋅x n-1 |
Integral rule | ∫ xndx = xn+1/(n+1)+C |
Exponents product rules
Product rule with same base
an ⋅ am = an+m
Example:
23 ⋅ 24 = 23+4 = 27 = 2⋅2⋅2⋅2⋅2⋅2⋅2 = 128
Product rule with same exponent
an ⋅ bn = (a ⋅ b)n
Example:
32 ⋅ 42 = (3⋅4)2 = 122 = 12⋅12 = 144
See: Multplying exponents
Exponents quotient rules
Quotient rule with same base
an / am = an-m
Example:
25 / 23 = 25-3 = 22 = 2⋅2 = 4
Quotient rule with same exponent
an / bn = (a / b)n
Example:
43 / 23 = (4/2)3 = 23 = 2⋅2⋅2 = 8
See: Dividing exponents
Exponents power rules
Power rule I
(an) m = a n⋅m
Example:
(23)2 = 23⋅2 = 26 = 2⋅2⋅2⋅2⋅2⋅2 = 64
Power rule II
a nm = a (nm)
Example:
232 = 2(32) = 2(3⋅3) = 29 = 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2 = 512
Power rule with radicals
m√(a n) = a n/m
Example:
2√(26) = 26/2 = 23 = 2⋅2⋅2 = 8
Negative exponents rule
b-n = 1 / bn
Example:
2-3 = 1/23 = 1/(2⋅2⋅2) = 1/8 = 0.125
PERSAMAAN EKSPONEN
SIFAT bx=by Jika dan Hanya Jika x=y dg b > 0 dan b ≠ 1
42x−1=64 42x−1=43 2x–1=3 2x=4 x=2
SIFAT f(x) g(x) = f(x) g(x) maka: (1) g(x) = h(x), (2) f(x) = 1, (3) f(x) = -1, dengan syarat g(x) dan h(x) sama-sama genap atau ganjil, (4) f (x) = 0, dengan syarat g(x), h(x) > 0.
(x – 2)x^2-2x = (x – 2)x+4, Kondisi (1) nya x2 – 2x = x + 4 x2 – 3x – 4 = 0 (x – 4)(x + 1) = 0 x = 4 dan x = – 1, Kondisi (2) nya (x – 2) = 1 x – 2 = 1 x = 3, Kondisi (3) nya (x – 2) = – 1 x – 2 = – 1 x = 1, Kondisi (4) nya (x – 2) = 0 x – 2 = 0 x = 2 tetapi karena g(x) > 0 22 – 2.2 = 0 bukan > 0 maka tidak Hp, dari ke-4 kondisi diperoleh Himpunan Penyelesaian x adalah Hp = {– 1, 1, 3, 4}
SIFAT af(x) = 1 ↔ f(x) = 1, (1) a = 1 , (2) a = -1, dengan syarat f(x) genap, (3) f(x) = 0, dengan syarat a ≠ 0
(2x + 3)x – 1 = 1 Kondisi (1) (2x + 3) = 1 2x + 3 = 1 2x = – 2 x = – 1, Kondisi (2) (2x + 3) = – 1 2x + 3 = – 1 2x = – 4 x = – 2 karena pada x - 1 = – 2 – 1 hasilnya tidak genap maka bukan Hp, Kondisi (3) (x–1) = 0 x – 1 = 0 x = 1 jadi Hp {– 1, 1}
SIFAT af(x) = bf(x) ↔ f(x) = 0 dengan a, b > 0 dan a, b ≠ 1
3 2x – 2 = 5 x – 1 krn beda pangkat maka ubah jadi sama 3 2(x – 1) = 5x – 1 9 x – 1 = 5 x – 1 dan pangkatnya sudah sama maka (x–1)=0 x–1=0 x = 1
SIFAT af(x) = bg(x) ↔ log af(x) = log bg(x)
(2/3)x = 61-x log (2/3)x = log 6 1 – x x log (2/3) = (1 - x) log 6 DASARNYA log an = n log a x log (2/3) = log 6 - x log 6 x log (2/3) + x log 6 = log 6 x (log (2/3) + log 6) = log 6 x log 4 = log 6 DASARNYA log a + log b = log (ab) x = log6/log4 x = 4log 6 Jadi, penyelesaiannya adalah x = 4log 6
SIFAT p . a 2 f(x) + q . a f(x) + r = 0 dimisalkan a f(x) = L maka persamaannya menjadi p . L 2 + q . L + r = 0
22x - 3. 2x+1 + 8 = 0 22x - 3. 2x+1 + 8 = 0 (2x)2 - 3. 2x . 21 + 8= 0 (2x)2 - 6(2x) + 8 = 0 Misalkan 2x = p, sehingga p2 - 6p + 8 = 0 (p - 2)(p - 4) = 0 p = 2 atau p = 4 Untuk p = 2 2x = 2 2x = 21 x = 1 Untuk p = 4 2x = 4 2x = 22 x = 2, Jadi, HP = {1, 2}
Tidak ada komentar:
Posting Komentar