SOAL PERTIDAKSAMAAN LOGARITMA DAN SIFAT-SIFATNYA

 




SOAL PERTIDAKSAMAAN LOGARITMA 

DAN SIFAT-SIFATNYA




Soal No.1
Carilah himpunan penyelesaian dari 2log(x2 + 4x) = 5

Pembahasan
2log(x2 + 4x) = 5
2log(x2 + 4x) = 2log 25
2log(x2 + 4x) = 2log 32

maka :
x2 + 4x = 32
x2 + 4x - 32 = 0
(x - 4)(x + 8) =
x = 4 dan x = -8

Himpunan penyelesaiannya adalah {-8, 4}


Soal No.2
Carilah himpunan penyelesaian dari 5log(2x2 + 5x - 10) = 5log(x2 - 2x + 18)

Pembahasan
5log(2x2 + 5x - 10) = 5log(x2 - 2x + 18)
2x2 + 5x - 10 = x2 - 2x + 18
2x2 - x2 + 5x - 2x - 10 - 18 = 0
x2 + 3x - 28 = 0
(x - 4)(x + 7) = 0
x=4 dan x=-7

Himpunan penyelesaiannya adalah {4,-7}


Soal No.3
Carilah himpunan penyelesaian dari 4log(3x - 1) = 5log(2x + 2)

Pembahasan
4log(3x - 1) = 5log(2x + 2)
3x - 1 = 2x + 2
3x - 2x - 1 - 2 = 0
x - 3 = 0
x = 3

Himpunan penyelesaiannya adalah {3}


Soal No.4
Carilah himpunan penyelesaian dari (x2-1)log(2x2 - 2x + 20) = (x2-1)log(x2 + 6x + 5)

Pembahasan
(x2-1)log(2x2 - 2x + 20) = (x2-1)log(x2 + 6x + 5)
2x2 - 2x + 20 = x2 + 6x + 5
2x2 - x2 - 2x - 6x + 20 - 5 = 0
x2 - 8x + 15 = 0
(x - 3)(x - 5) = 0
x = 3 dan x = 5

Himpunan penyelesaiannya adalah {3,5}


Soal No.5
Tentukan nilai x dari persamaan logaritma 3log2x - 7.3log x + 12 = 0

Pembahasan
Misalkan : p = 3log x

Maka :
p2 - 7p + 12 =
(p - 4)(p - 3) = p = 4 dan p = 3

Substitusi nilai p = 3log x, sehingga diperoleh nilai x:
3log x = p (masukkan nilai p = 4)
3log x = 4 ⇒ x = 34 = 81

3log x = p (masukkan nilai p = 3)
3log x = 3 ⇒ x = 33 = 27

Jadi nilai x nya adalah {81, 27}


1. 5log 3x + 5 < 5log 35

Pembahasan :
Syarat nilai bilangan pada logaritma 3x + 5 > 0 atau x > -5/3 ..... (1)
3x + 5 < 35
      3x < 30
        x < 10  ....(2)

Jadi dari (1) dan (2) diperoleh penyelesaian -5/3 < x < 10.



2.3log (2x + 3) > 3log 15

Pembahasan :
Syarat nilai bilangan pada logaritma 2x + 3 > 0 atau x > -3/2 ..... (1)
Perbandingan nilai pada logaritma
2x + 3 > 15
      2x > 12
        x > 6  ....(2)
Jadi, dari (1) dan (2) diperoleh penyelesaian x > 6.


3.  2log (6x + 2) < 2log (x + 27)

Pembahasan :
Syarat nilai bilangan pada logaritma:
6x + 2 > 0, maka x > -1/3 .... (1)
x + 27 > 0, maka x > -27 ..... (2)
Perbandingan nilai pada logaritma
6x + 2 < x + 27
 6x – x < 27 – 2
      5x < 25
        x < 5   ..... (3)
Jadi, dari (1), (2),dan (3) diperoleh penyelesaian -1/3 < x < 5



4.  2log (5x – 16) < 6

Pembahasan :
Syarat nilai bilangan pada logaritma:
5x – 16 > 0, maka x > 16/5 .... (1)
Perbandingan nilai pada logaritma
2log (5x – 16) < 2log 26
2log (5x – 16) < 2log 64
         5x – 16 <  64
                5x < 80
                  x < 16 . . . . (2)
Jadi, dari (1) dan (2) diperoleh penyelesaian 16/5 < x < 16.


5.  4log (2x2 + 24) > 4log (x2 + 10x)

Pembahasan :
Syarat nilai pada logaritma.
2x2 + 24 > 0 (definit positif). Jadi, berlaku untuk setiap x  . . . (1)
x2 + 10x > 0, maka x < -10  atau x > 0 . . . . (2)
Perbandingan nilai pada logaritma
(2x2 + 24) >  (x2 + 10x)
2x2 - x2 - 10x + 24 > 0
        x2 - 10x + 24 > 0
        (x – 4)(x – 6) >
       x < 4 atau x > 6 ....(3)

Jadi, dari (1), (2), dan (3) diperoleh penyelesaian x < -10 atau x > 6.


6.  x+1log (2x – 3) < x+1log (x + 5)

Pembahasan :
Syarat nilai pada bilangan x+1>0  
Batas ini dibagi menjadi 2,yaitu 0<x+1<1 dan x+1>1, sehingga diperoleh batas-batas berikut.

Untuk  0<x+1<1 atau -1 < x <0. . . (1) 
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2       . . . (2)
x + 5 > 0, maka x > -5        . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) >  (x + 5)
   2x - x > 5 + 3
          x >  8         ...(4)
    Dari pertidaksamaan (1), (2), (3) dam (4), tidak ada irisan penyelesaian.

  
Untuk  x+1>1 atau x > 0 . . . (1) 
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2       . . . (2)
x + 5 > 0, maka x > -5        . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) <  (x + 5)
   2x - x < 5 + 3
          x <  8         ...(4)
    Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 3/2 <x < 8.
Jadi, penyelesaiannya adalah 3/2 <x< 8.


7.  2x-5log (x2 + 5x) > 2x-5log (4x + 12)

Pembahasan :
Syarat nilai pada bilangan 2x-5 > 0  
Batas ini dibagi menjadi 2,yaitu 0<2x-5<1 dan 2x-5>1, sehingga diperoleh batas-batas berikut.

Untuk  0< 2x-5 <1 atau 5/2 < x < 3        . . . (1) 
Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0       . . . (2)
4x + 12 > 0, maka x > -3                       . . . (3)
Perbandingan nilai pada logaritma
(x2 + 5x) < (4x + 12)
x2 + 5x - 4x - 12 < 0
        x2 + x - 12 < 0
    (x + 4)(x - 3) < 0 
       -4 < x < 3              . . . . . (4)

Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 5/2 < x < 3.
     
     Untuk  2x-5 > 1 atau  x > 3       . . . (1) 
     Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0       . . . (2)
4x - 12 > 0, maka x > 3            . . . (3)
    
Perbandingan nilai pada logaritma
(x2 + 5x) > (4x + 12)
x2 + 5x - 4x - 12 > 0
         x2 + x - 12 > 0
(x + 4)(x - 3) > 0 
x <-4 atau  x > 3        . . . . . (4)
  
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu x > 3.

Jika, kedua penyelesaian digabungkan maka diperoleh penyelesaian x > 5/2 dan x =/ 3


Tidak ada komentar:

Posting Komentar

Pembahasan Soal Vektor

01.Diketahui vektor v = [-7 8] dan A(1,-2). jika |AB|=|v| dan AB=-v, maka koordinat titik B adalah... V = ( - 7 + 8 ) | AB | = | ...