Nama : Putri Dea Ananda
Kelas : X MIPA 1
1. a + 2b – 3c
=
=
=
=
= (–1 13 –2)
= –i + 13j – 2k
2. Diketahui vektor u=(8,6) dan vektor v=(4,3). jika p vektor u +q vektor v=7 vektor v
<8p,6p> + <4q,3q> = <28,21>
24p + 12q = 84
24p + 12q = 84
2p + q = 7
q = 7 - 2p (C)
3. a = 2i - 3j + 4k,
b = 5j + 5k = 0i + 5j + 5kab = 2(0) + (-3)(5) + 4(5) = 0 - 15 + 20 = 5
4. |a + b| = 2√19
|a + b|^2 = (2√19)^2|a|^2 + 2ab + |b|^2 = 4(19)
4^2 + 2ab + 6^2 = 76
16 + 2ab + 36 = 76
2ab = 24
|a - b|^2 = |a|^2 - 2ab + |b|^2
|a - b|^2 = 4^2 - 24 + 6^2
|a - b|^2 = 28
|a - b| = √28 = 2√7
5. b x c = 0
(p,2,-1) x (1,-1,3) = 0(p,-2,-3) = 0
p-2-3= 0
p = 5
a-b-c =
(2,-3,1)-(5,2,-1)-(1,-1,3) = (-4,4,-1)
6. a . b = |a| |b| Cos 60
(I - 2 + p²) = √(3 + p²) √(p² - 1) (1/2)
P² - 1 = √(p² + 3) √(p² - 1) (1/2)
2p² - 2 = √[(p²)² + 2p² -3]
4(p²)² - 4 = (p²)² + 2p² - 3
3(p²)² - 2p² - 1 = 0
Misal p² = a
3a² - 2a - 1 = 0
(3a + 1)(a - 1) = 0
a = 1
a = -1/3 (Tidak Memenuhi)
P² = 1
P² - 1 = 0
P² - 1² = 0
(P + 1)(P - 1) = 0
P = 1
P = -1
(I - 2 + p²) = √(3 + p²) √(p² - 1) (1/2)
P² - 1 = √(p² + 3) √(p² - 1) (1/2)
2p² - 2 = √[(p²)² + 2p² -3]
4(p²)² - 4 = (p²)² + 2p² - 3
3(p²)² - 2p² - 1 = 0
Misal p² = a
3a² - 2a - 1 = 0
(3a + 1)(a - 1) = 0
a = 1
a = -1/3 (Tidak Memenuhi)
P² = 1
P² - 1 = 0
P² - 1² = 0
(P + 1)(P - 1) = 0
P = 1
P = -1
7. A = (3, 2, -1)
B = (1, -2, 1)C = (7,(p - 1), -5)
panjang AB = B - A
= (1, -2, 1) - (3, 2, -1)
= (-2, -4, 2)
panjang BC = C - B
= (7, (p - 1), -5) - (1, -2, 1)
= (6, (p + 1), -6)
kita cari konstanta yang mengubah (-2, -4, 2) menjadi (6, (p + 1), -6)
misal kita ambil vektor dari sumbu x
-2 * x = 6
x = 6 / -2
x = -3
maka,
-4 * x = (p + 1)
-4 * -3 = p + 1
12 = p + 1
p = 12 - 1
p = 11
8. Diketahui
- A(3, 1, –4)
- B(3, –4, 6)
- C(–1, 5, 4)
- AP : PB = 3 : 2
Ditanyakan
Vektor PC = .... ?
Jawab
AP : PB = 3 : 2, maka
p =
p =
p =
p =
p = (3, –2, 2)
Jadi vektor PC
= c – p
=
=
= –4i + 7j + 2k
= (–4, 7, 2)
9. Diketahui
a = (-2,8,4)b = (0,p,4)
menggunakan rumus proyeksi skalar orthogonal
a • b / |b| = 8
8p + 16 / √p² + 16 = 8
pindah ruas
8p + 16 = 8√p² + 16
Kuadrat kedua ruas (8p + 16)^2 = (8√p² + 16)^2
64p² + 256p + 256 = 64p² + 1.024
256p = 1.024 - 256
256p = 768
p = 768 : 256
p = 3
10. Diketahui :
a = (p, 2, -1)
b = (4, -3, 6)
c = (2, -1, 3)
a tegak lurus b => a.b = 0
Ditanyakan :
(a - 2b) . 3c = .... ?
Jawab :
a . b = 0
(p, 2, -1) . (4, -3, 6) = 0
p(4) + 2(-3) + (-1)(6) = 0
4p - 6 - 6 = 0
4p = 12
p = 3
a - 2b
= (p, 2, -1) - 2(4, -3, 6)
= (3, 2, -1) - (8, -6, 12)
= (-5, 8, -13)
3c = 3(2, -1, 3) = (6, -3, 9)
(a - 2b) . 3c
= (-5, 8, -13) . (6, -3, 9)
= -5(6) + 8(-3) + (-13)(9)
= -30 - 24 - 117
= -171
a = (p, 2, -1)
b = (4, -3, 6)
c = (2, -1, 3)
a tegak lurus b => a.b = 0
Ditanyakan :
(a - 2b) . 3c = .... ?
Jawab :
a . b = 0
(p, 2, -1) . (4, -3, 6) = 0
p(4) + 2(-3) + (-1)(6) = 0
4p - 6 - 6 = 0
4p = 12
p = 3
a - 2b
= (p, 2, -1) - 2(4, -3, 6)
= (3, 2, -1) - (8, -6, 12)
= (-5, 8, -13)
3c = 3(2, -1, 3) = (6, -3, 9)
(a - 2b) . 3c
= (-5, 8, -13) . (6, -3, 9)
= -5(6) + 8(-3) + (-13)(9)
= -30 - 24 - 117
= -171
11.
16. |z| = ½ |b||
|z| = ½ √(2)² + (y)² + (2)²
Tidak ada komentar:
Posting Komentar