SOAL PERTIDAKSAMAAN LOGARITMA DAN SIFAT-SIFATNYA

 




SOAL PERTIDAKSAMAAN LOGARITMA 

DAN SIFAT-SIFATNYA




Soal No.1
Carilah himpunan penyelesaian dari 2log(x2 + 4x) = 5

Pembahasan
2log(x2 + 4x) = 5
2log(x2 + 4x) = 2log 25
2log(x2 + 4x) = 2log 32

maka :
x2 + 4x = 32
x2 + 4x - 32 = 0
(x - 4)(x + 8) =
x = 4 dan x = -8

Himpunan penyelesaiannya adalah {-8, 4}


Soal No.2
Carilah himpunan penyelesaian dari 5log(2x2 + 5x - 10) = 5log(x2 - 2x + 18)

Pembahasan
5log(2x2 + 5x - 10) = 5log(x2 - 2x + 18)
2x2 + 5x - 10 = x2 - 2x + 18
2x2 - x2 + 5x - 2x - 10 - 18 = 0
x2 + 3x - 28 = 0
(x - 4)(x + 7) = 0
x=4 dan x=-7

Himpunan penyelesaiannya adalah {4,-7}


Soal No.3
Carilah himpunan penyelesaian dari 4log(3x - 1) = 5log(2x + 2)

Pembahasan
4log(3x - 1) = 5log(2x + 2)
3x - 1 = 2x + 2
3x - 2x - 1 - 2 = 0
x - 3 = 0
x = 3

Himpunan penyelesaiannya adalah {3}


Soal No.4
Carilah himpunan penyelesaian dari (x2-1)log(2x2 - 2x + 20) = (x2-1)log(x2 + 6x + 5)

Pembahasan
(x2-1)log(2x2 - 2x + 20) = (x2-1)log(x2 + 6x + 5)
2x2 - 2x + 20 = x2 + 6x + 5
2x2 - x2 - 2x - 6x + 20 - 5 = 0
x2 - 8x + 15 = 0
(x - 3)(x - 5) = 0
x = 3 dan x = 5

Himpunan penyelesaiannya adalah {3,5}


Soal No.5
Tentukan nilai x dari persamaan logaritma 3log2x - 7.3log x + 12 = 0

Pembahasan
Misalkan : p = 3log x

Maka :
p2 - 7p + 12 =
(p - 4)(p - 3) = p = 4 dan p = 3

Substitusi nilai p = 3log x, sehingga diperoleh nilai x:
3log x = p (masukkan nilai p = 4)
3log x = 4 ⇒ x = 34 = 81

3log x = p (masukkan nilai p = 3)
3log x = 3 ⇒ x = 33 = 27

Jadi nilai x nya adalah {81, 27}


1. 5log 3x + 5 < 5log 35

Pembahasan :
Syarat nilai bilangan pada logaritma 3x + 5 > 0 atau x > -5/3 ..... (1)
3x + 5 < 35
      3x < 30
        x < 10  ....(2)

Jadi dari (1) dan (2) diperoleh penyelesaian -5/3 < x < 10.



2.3log (2x + 3) > 3log 15

Pembahasan :
Syarat nilai bilangan pada logaritma 2x + 3 > 0 atau x > -3/2 ..... (1)
Perbandingan nilai pada logaritma
2x + 3 > 15
      2x > 12
        x > 6  ....(2)
Jadi, dari (1) dan (2) diperoleh penyelesaian x > 6.


3.  2log (6x + 2) < 2log (x + 27)

Pembahasan :
Syarat nilai bilangan pada logaritma:
6x + 2 > 0, maka x > -1/3 .... (1)
x + 27 > 0, maka x > -27 ..... (2)
Perbandingan nilai pada logaritma
6x + 2 < x + 27
 6x – x < 27 – 2
      5x < 25
        x < 5   ..... (3)
Jadi, dari (1), (2),dan (3) diperoleh penyelesaian -1/3 < x < 5



4.  2log (5x – 16) < 6

Pembahasan :
Syarat nilai bilangan pada logaritma:
5x – 16 > 0, maka x > 16/5 .... (1)
Perbandingan nilai pada logaritma
2log (5x – 16) < 2log 26
2log (5x – 16) < 2log 64
         5x – 16 <  64
                5x < 80
                  x < 16 . . . . (2)
Jadi, dari (1) dan (2) diperoleh penyelesaian 16/5 < x < 16.


5.  4log (2x2 + 24) > 4log (x2 + 10x)

Pembahasan :
Syarat nilai pada logaritma.
2x2 + 24 > 0 (definit positif). Jadi, berlaku untuk setiap x  . . . (1)
x2 + 10x > 0, maka x < -10  atau x > 0 . . . . (2)
Perbandingan nilai pada logaritma
(2x2 + 24) >  (x2 + 10x)
2x2 - x2 - 10x + 24 > 0
        x2 - 10x + 24 > 0
        (x – 4)(x – 6) >
       x < 4 atau x > 6 ....(3)

Jadi, dari (1), (2), dan (3) diperoleh penyelesaian x < -10 atau x > 6.


6.  x+1log (2x – 3) < x+1log (x + 5)

Pembahasan :
Syarat nilai pada bilangan x+1>0  
Batas ini dibagi menjadi 2,yaitu 0<x+1<1 dan x+1>1, sehingga diperoleh batas-batas berikut.

Untuk  0<x+1<1 atau -1 < x <0. . . (1) 
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2       . . . (2)
x + 5 > 0, maka x > -5        . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) >  (x + 5)
   2x - x > 5 + 3
          x >  8         ...(4)
    Dari pertidaksamaan (1), (2), (3) dam (4), tidak ada irisan penyelesaian.

  
Untuk  x+1>1 atau x > 0 . . . (1) 
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2       . . . (2)
x + 5 > 0, maka x > -5        . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) <  (x + 5)
   2x - x < 5 + 3
          x <  8         ...(4)
    Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 3/2 <x < 8.
Jadi, penyelesaiannya adalah 3/2 <x< 8.


7.  2x-5log (x2 + 5x) > 2x-5log (4x + 12)

Pembahasan :
Syarat nilai pada bilangan 2x-5 > 0  
Batas ini dibagi menjadi 2,yaitu 0<2x-5<1 dan 2x-5>1, sehingga diperoleh batas-batas berikut.

Untuk  0< 2x-5 <1 atau 5/2 < x < 3        . . . (1) 
Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0       . . . (2)
4x + 12 > 0, maka x > -3                       . . . (3)
Perbandingan nilai pada logaritma
(x2 + 5x) < (4x + 12)
x2 + 5x - 4x - 12 < 0
        x2 + x - 12 < 0
    (x + 4)(x - 3) < 0 
       -4 < x < 3              . . . . . (4)

Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 5/2 < x < 3.
     
     Untuk  2x-5 > 1 atau  x > 3       . . . (1) 
     Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0       . . . (2)
4x - 12 > 0, maka x > 3            . . . (3)
    
Perbandingan nilai pada logaritma
(x2 + 5x) > (4x + 12)
x2 + 5x - 4x - 12 > 0
         x2 + x - 12 > 0
(x + 4)(x - 3) > 0 
x <-4 atau  x > 3        . . . . . (4)
  
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu x > 3.

Jika, kedua penyelesaian digabungkan maka diperoleh penyelesaian x > 5/2 dan x =/ 3


PERTIDAKSAMAAN LOGARITMA DAN SIFAT-SIFATNYA

 


Pertidaksamaan Logaritma


Pertidaksamaan Logaritma

Pertidaksamaan juga bisa dioperasikan pada logaritma. Pada petidaksamaan logaritma, berlaku beberapa teorema yaitu:

Saat a > 1

  • Jika ^a\log f(x) < ^a \log g(x), maka 0 < f(x) < g(x)
  • Jika ^a\log f(x) > ^a\log g(x), maka f(x) > ;g(x) > 0

Saat 0 < a < 1

  • Jika ^a\log f(x) < ^a\log g(x), maka f(x) > g(x) > 0
  • Jika ^a\log f(x) > ^a\log g(x), maka 0 < f(x) < g(x)

Sebagai contoh, menentukan nilai x yang memenuhi pertidaksamaan:

^2\log(2x + 1) < ^2\log 3

Berubah bentuk menjadi:

2x + 1

2x < 2

x < 1

Dari pertidaksamaan tersebut diketahui bahwa a = 2, berarti a > 1. Berlaku syarat: Jika ^a\log f(x) < ^a\log g(x), maka 0 < f(x) < g(x). Sehingga:

0 < (2x+1) < 3

-1 < (2x) < 2

-\frac{1}{2} < x < 1

Garis bilangannya adalah:

contoh soal persamaan dan pertidaksamaan logaritma

Sama halnya dengan persamaan logaritma, pertidaksamaan logaritma sering kali dilakukan permisalan y = ^a \log x. Permisalan ini untuk menyederhanakan dan mempermudah penyelesaiaan pertidaksamaan. Sebagai contoh penyelesaian dari:

(2 \log x-1)(\frac{1}{^x\log 10}) > 1

Diubah menjadi:

(2 \log x - 1)(\log x) > 1

2 \log^2 x - \log x - 1 > 0

Dimisalkan y = log x, maka pertidaksamaan menjadi:

2y^2 - y - 1 > 0

(2y + 1)(y - 1)

Akar-akarnya adalah :

y_1 = -\frac{1}{2} dan y_2 = 1

Maka nilai x adalah:

y_1 = -\frac{1}{2}\overset{maka}{\rightarrow}-\frac{1}{2} = \log x

x_1 = 10^{-\frac{1}{2}} = \frac{1}{\sqrt{10}}

y_2 = 1\overset{maka}{\rightarrow}1 = \log x

x_2 = 10

Berlaku syarat x > 0, dan x ≠ 1, maka garis bilangannya adalah:

pertidaksamaan logaritma

Penyelesaiannya adalah:

0 < x < \frac{1}{\sqrt{10}} atau x > 10


SOAL PERSAMAAN LOGARITMA DAN SIFAT-SIFATNYA




 SOAL PERSAMAAN LOGARITMA DAN SIFAT-SIFATNYA

Sifat-Sifat Logaritma

 

 

 

 

 

 

 


Sifat-sifat Logaritma

Operasi logaritma memiliki sifat apabila dikalikan, dibagi, ditambah, dikurang atau bahkan dipangkatkan. Sifat-sifat dari operasi logaritma tersebut dijelaskan oleh tabel di bawah ini :

sifat logaritma

1. Sifat Logaritma Dasar

Sifat dasar dari sebuah perpangkatan adalah apabila sebuah bilangan dipangkatkan dengan 1 maka hasilnya akan tetap sama dengan sebelumnya.

Sama halnya dengan logaritma, apabila sebuah logaritma memiliki basis dan numerus yang sama maka hasilnya adalah 1.

log a = 1

Selain itu, apabila suatu bilangan dipangkatkan dengan 0 maka hasilnya adalah 1. Untuk itulah apabila numerus logaritma bernilai 1 maka hasilnya adalah 0.

a log 1 = 0

2. Logaritma Koefisien

Apabila sebuah logaritma memiliki basis atau numerus yang berpangkat. Maka, pangkat dari basis atau numerus tersebut dapat menjadi koefisien dari logaritma itu sendiri.

Pangkat basis menjadi penyebut dan pangkat numerus menjadi pembilang.

( a^x ) log ( b^y ) = ( y / x ) . log b

Ketika basis dan numerus memiliki pangkat yang bernilai sama maka pangkat tersebut dapat dihilangkan karena koefisien logaritma bernilai 1.

(a^x)log(b^x) = (x/x) . log b = 1 . log b

Sehingga

(a^x) log (b^x) = log b

3. Logaritma Sebanding Terbalik

Sebuah logaritma dapat memiliki nilai yang sebanding dengan logaritma lain yang berbanding terbalik antara basis dan numerusnya.

a log b = 1 / ( b log a )

Jangan langsung kesel karena liat sifat-sifat logaritma di atas ya hehehe. Semua sifat logaritma di atas bisa kita kuasai dengan mudah jika kita sering mengerjakan latihan soal logaritma. Ayo kita kerjakan soal-soal dibawah ini.

4. Sifat Perpangkatan Logaritma

Apabila sebuah bilangan dipangkatkan dengan logaritma yang memiliki basis yang sama dengan bilangan tersebut maka hasilnya akan berupa numerus dari logaritma itu sendiri.

a ^ ( log b ) = b

5. Sifat Penjumlahan dan Pengurangan Logaritma

Logaritma dapat dijumlahkan dengan logaritma lain yang memiliki basis yang sama. Hasil dari penjumlahan tersebut berupa logaritma dengan basis yang sama dan numerus yang dikalikan.

log x + a log y = a log ( x . y )

Selain penjumlahan, logaritma juga dapat dikurangkan dengan logaritma lain yang memiliki basis yang sama.

Namun, terdapat perbedaan pada hasilnya dimana hasilnya akan berupa pembagian antara numerus dari logaritma.

log x – a log y = a log ( x / y )

6. Sifat Perkalian dan Pembagian Logaritma

Operasi perkalian antara dua buah logaritma dapat disederhanakan apabila kedua logaritma tersebut memiliki basis atau numerus yang sama.

a log x . x log b = a log b

Sedangkan untuk pembagian logaritma dapat disederhanakan apabila kedua logaritma hanya memiliki basis yang sama.

x log b / x log a = a log b

7. Sifat Logaritma Numerus Terbalik

Sebuah logaritma dapat memiliki nilai yang sama dengan negatif logaritma lain yang memiliki numerus dengan pecahan terbalik.

a log ( x / y ) = – a log ( y / x )

Contoh Latihan Soal Logaritma 1

Contoh Soal 1

²log 16 =….

Pembahasan: 



Contoh Soal 2


Pembasahan :





Contoh Soal 3


Pembahasan :

Contoh Soal 4

Jika ³log 2 = a, maka ³log 6 =….

Pembahasan :



Contoh Soal Logaritma 2

Sederhanakan logaritma berikut ini!

  1. log 25 . 5 log 4 + 2 log 6 – 2log 3
  2. 9 log 36 / 3 log 7
  3. 9^(3 log 7)

Jawab :

a. log 25 . 5 log 4 + 2 log 6 – 2log 3

log 52 . 5 log 22 + 2 log (3.2/3)
= 2.2 . log 5 . 5 log 2+ log 2
= 2 . 2 log 2 + 1
= 2 . 1 + 1
= 3

b. 9 log 4 / 3 log 7

3^2 log 22 / 3 log 7
3 log 2 / 3 log 7
7 log 2

c. 9^(3 log 7)

= 3^(3 log 7)
= 3^(2 .3 log 7)
= 3^(3 log 49)
= 49


Pembahasan Soal Vektor

01.Diketahui vektor v = [-7 8] dan A(1,-2). jika |AB|=|v| dan AB=-v, maka koordinat titik B adalah... V = ( - 7 + 8 ) | AB | = | ...