LOGARITMA DAN SOALNYA

 

Soal No. 1

Ubah bentuk pangkat pada soal-soal berikut menjadi bentuk logaritma:
a) 23 = 8
b) 54 = 625
c) 72 = 49

Pembahasan
Transformasi bentuk pangkat ke bentuk logaritma:

Jika ba = c, maka blog c = a

a) 23 = 8 → 2log 8 = 3
b) 54 = 625 → 5log 625 = 4
c) 72 = 49 → 7log 49 = 2

Soal No. 2
Tentukan nilai dari:
a) 2log 8 + 3log 9 + 5log 125
b) 2log 1/8 + 3log 1/9 + 5log 1/125

Pembahasan
a) 2log 8 + 3log 9 + 5log 125
2log 23 + 3log 32 + 5log 53 = 3 2log 2 + 2 3log 3 + 3 5log 5
= 3 + 2 + 3 = 8

b) 2log 1/8 + 3log 1/9 + 5log 1/125
2log 2−3 + 3log 3−2 + 5log 5−3
= − 3 − 2 − 3 = − 8

Soal No. 3
Tentukan nilai dari
a) 4log 8 + 27log 9
b) 8log 4 + 27log 1/9

Pembahasan
a) 4log 8 + 27log 9
22log 23 + 33log 32
= 3/2 2log 2 + 2/3 3log 3
= 3/2 + 2/3 = 9/6 + 4/6 = 13/6

b) 8log 4 + 27log 1/9

23log 22 + 33log 3−2
= 2/3 2log 2 + (−2/3) 3log 3
= 2/3 − 2/3 = 0

Soal No. 4
Tentukan nilai dari:
a) √2log 8
b) √3log 27

Pembahasan
a) √2log 8
21/2log 23 = 3/0,5 2log 2 = 3/0,5 = 6

b) √3log 9
31/2log 32 = 2/0,5 3log 3 = 2/0,5 = 4

Soal No. 5
Diketahui:
log p = A
log q = B
Tentukan nilai dari log p3 q2

Pembahasan
log p3 q2 = log p3 + log q2 = 3 log p + 2 log q = 3A + 2B

Soal No. 6
Diketahui
log 40 = A dan log 2 = B, tentukan nilai dari log 20

Pembahasan
log 20 = log 40/2 = log 40 − log 2 = A − B

Soal No. 7
Diketahui 2log 7 = a dan 2log 3 = b. Tentukan nilai dari 6log 14

Pembahasan
2log 7 = a
log 7log 2 = a
log 7 = a log 2

2log 3 = b
log 3 / log 2 = b
log 3 = b log 2

6log 14 = log 14/log6

     log 2.7      log 2 + log 7         log 2 + a log 2       log 2 (1 + a)          (1 + a)
= _________ = ________________ = __________________ = ________________ = _________
     log 2. 3      log 2 + log 3          log 2 + b log 2      log 2 (1 + b)          (1 + b)

Soal No. 8
                      
Diketahui 2log  (12 x + 4) = 3. Tentukan nilai x

Pembahasan
2log  (12 x + 4) = 3


Ruas kiri bentuknya log, ruas kanan belum bentuk log, ubahdulu ruas kanan agar jadi bentuk log.  Ingat 3 itu sama juga dengan 2log 2. Ingat rumus alog ab = b jadi

 2log √( 12 x + 4) = 2log 23

Kiri kanan sudah bentuk log dengan basis yang sama-sama dua, hingga tinggal menyamakan yang di dalam log kiri-kanan atau coret aja lognya:

 2log √( 12 x + 4) = 2log 23

√( 12 x + 4) = 23

√( 12 x + 4)  = 8

Agar hilang akarnya, kuadratkan kiri, kuadratkan kanan. Yang kiri jadi hilang akarnya:

12 x + 4 = 82
12x + 4 = 64
12 x = 60
x = 60/12 = 5

Soal No. 9
Tentukan nilai dari 3log 5log 125

Pembahasan
3log 5log 125 = 3log 5log 53
3log 3 = 1

Soal No. 10
Diketahui  2log 3 = m dan  2log 5 = n . Tentukan nilai dari 2log 90

Pembahasan
               log 3     
2log 3 = _______ = m   Sehingga    log 3 = m log 2
               log 2

               log 5     
2log 5 = _______ = n   Sehingga    log 5 = n log 2
               log 2

            

             log 32. 5 . 2                   2 log 3 + log 5 + log 2       

2log 90 = ___________________ =  ______________________________
                    log 2                                     log 2

                   2 m log 2 + n log 2  + log 2       
2log 90 = _________________________________________ =  2 m + n + 1
                                    log 2                             

Soal No. 11
Nilai dari


A. 1
B. 2
C. 3
D. 5
E. 6

Pembahasan
Dari sifat logaritma berikut:


Soal disederhanakan menjadi

Soal No. 12
Nilai dari


A. 1
B. 2
C. 3
D. 5
E. 6

Pembahasan
Dari sifat yang sama:


Diperoleh hasil


13. Nilai dari 2log 4 + 2log 12 – 2log 6 =…


  1. 8
  2. 6
  3. 5
  4. 4
  5. 3

Pembahasan :

Untuk soal seperti di atas, maka kita perlu mengingat sifat logaritma

alog(b.c) = alog b + alog c, dan

alog  = alog b – alog c

sehingga, untuk menyelesaikan soal di atas, kita gunakan kedua sifat logaritma tersebut. Dimana perhitungannya akan menjadi :

2log 4 + 2log 12 – 2log 6           = 2log

                                    = 2log 8

Kemudian, untuk penyelesaian akhir, kita perlu mengingat sifat berikutnya, yaitu :

alog  = n .  alog b

→ 8 =

sehingga, penyelesaian akhirnya akan menjadi seperti berikut ini :

2log 8   = 2log

            = 3 . 2log 2       → jangan lupa dengan yang ini : alog a = 1

            = 3 . 1

            = 3       ( E )


14.Nilai dari 2log 48 + 5log 50 – 2log 3 – 5log 2 =…


  1. -2
  2. -6
  3. 2
  4. 6

Pembahasan :

Sebelum mengerjakan, mari kita lihat perbedaan antara soal no. 1 dengan no. 2. Perbedaannya adalah :

  • Pada soal no. 1, indeks logaritma merupakan indeks yang seragam ( indeks 2 )
  • Sedangkan pada soal no. 2, indeks logaritma yang digunakan indeks tidak seragam ( indeks 2 dan indeks 5 )

Nah, tentu saja dengan perbedaan seperti ini, maka kita tidak bisa langsung menyelesaikannya seperti soal no. 1 di atas. Akan tetapi, soal no. 2 ini perlu di utak-atik sedikit supaya bisa diselesaikan dengan sifat-sifat yang ada.


Utak-atik yang perlu kita lakukan adalah dengan menggabungkan masing-masing logaritma dengan yang sejenis atau ber-indeks sama ( indeks 2 dengan indeks 2, indeks 5 dengan indeks 5 ), sehingga soal tersebut akan menjadi :


2log 48 – 2log 3 + 5log 50 – 5log 2  =…

Kemudian, soal tersebut bisa kita hitung dengan sifat :


alog  = alog b – alog c

2log 48 – 2log 3 + 5log 50 – 5log 2 = 2log  + 5log

                                                                          = 2log 16 + 5log 25


Sekarang kita gunakan sifat berikutnya : alog  = n .  alog b

→ 16 =

→ 25 =

Dan juga gunakan sifat : alog a = 1

Sehingga, penyelesaiannya akan menjadi :

2log    + 5log  = 4 . 2log  + 2 . 5log

                                       = 4 + 2

                                       = 6    ( E )


15. Jika log 3 = 0,4771 dan log 2 = 0,3010, maka nilai dari log 75 =…


  1. 0,7781
  2. 0,9209
  3. 1,0791
  4. 1,2552
  5. 1,8751

Pembahasan :

Untuk soal yang modelnya begini ini, ada kunci pengerjaannya yang harus kita paham. Yaitu adalah keterangan yang menunjukkan nilai log 2 dan log 3. Dengan adanya keterangan tambahan tersebut, berarti yang harus ada di pikiran kita adalah bagaimana mengubah bentuk log 75 menjadi bentuk logaritma yang mengandung unsur bilangan 2 dan 3.


→ 75 = 3 . 25 = 3 .

Sehingga, bila kita ubah bilangan 75 tersebut dengan 3.  , maka akan kita dapatkan :


log 75   = log ( 3 .  ) → dengan ini, kita harus ingat sifat : alog(b.c) = alog b + alog c

            = log 3 + log  → jangan lupa bahwa : alog  = n .  alog b

                        = log 3 + 2 . log 5


Maksudnya adalah dengan mengubah bilangan 5 pada log 5 tersebut, karena di dalam soal yang diberi keterangan adalah log 2 dan log 3, sedangkan log 5 tidak diberi keterangan apapun.


Untuk itu, trik yang perlu dilakukan di sini adalah :

→ 5 =


Bilangan 5 tersebut perlu kita ubah ke dalam suatu bilangan yang mengandung unsur bilangan 2 dan nilainya tidak berubah ( tetap bernilai 5 ). Sehingga, jika kita selesaikan, akan menjadi :


log 75  = log 3 + 2 . log  → tentu masih ingat sifat  alog  = alog b – alog c, kan?

                        = log 3 + 2 ( log 10 – log 2 ) → log 10 = 10log 10 = 1 → alog a = 1

                        = 0,4771 + 2 ( 1 – 0,3010 )

                        = 1,8751          ( E )


16. Diketahui 2log 3 = 1,6 dan 2log 5 = 2,3; nilai dari 2log ..


  1. 10,1
  2. 6,9
  3. 5,4
  4. 3,2
  5. 3,7

Pembahasan :

Sedikit mirip dengan soal sebelumnya, dengan mengetahui ada keterangan di dalam soal mengenai nilai dari sebuah logaritma suatu bilangan, maka yang perlu kita lakukan adalah dengan mengubahnya ke dalam bentuk yang mengandung unsur bilangan yang sesuai dengan keterangan tersebut.


→ 125 = 5 . 5 . 5 =

→ 9 =


Sehingga, jika kita selesaikan soal tersebut, akan menjadi :

2log  = 2log    → bisa ditebak kan? Di sini kita perlu sifat : alog  = alog b – alog c

              = 2log  – 2log


Kemudian, sifat logaritma yang kita gunakan berikutnya adalah sifat :

alog  = n .  alog b


maka, persamaan di atas selanjutnya akan menjadi :

              = 3 . 2log 5 – 2 . 2log 3

              = 3 . ( 2,3 ) – 2. ( 1,6 )

              = 6,9 – 3,2

              = 3,7              ( E )


17. Nilai dari 2log 8 – 1/2log 0,25 + 3log + 2log 1 =…


  1. -2
  2. -1
  3. 0
  4. 1
  5. 2

Pembahasan :

Pada soal kali ini, masih mirip dengan soal-soal sebelumnya. Yaitu, penyederhanaan logaritma dengan cara menggabungkan beberapa fungsi log yang memiliki indeks sama.


Jadi, untuk menggabungkan fungsi log tersebut kita harus tahu mana yang memiliki indeks yang sama.


Yang memiliki indeks yang sama adalah 2log 81/2log 0,252log 1


Dari ketiga fungsi log di atas, ada satu yang diwarnai merah, yaitu 1/2log 0,25 karena fungsi yang ini perlu kita ubah sedikit supaya menjadi indeks 2. Jadi, yang perlu kita lakukan adalah dengan menggunakan salah satu sifat logaritma, yaitu sifat :


Sehingga, bentuk 1/2log 0,25 bisa kita ubah menjadi


Contoh Soal 5

Setelah kita dapatkan bentuk sebelumnya menjadi ber-indeks 2, maka sekarang kita bisa mulai menyelesaikan soal di atas dengan menggunakan sifat-sifat dasar seperti soal sebelumnya, yaitu:


alog(b.c) = alog b + alog c, dan

alog  = alog b – alog c

Sehingga, pengerjaannya akan menjadi :


2log 8 – 1/2log 0,25 + 3log  + 2log 1   = 2log 8 – 2log 4 + 3log  + 2log 1

                                                            = 2log  + 3log


Ingat! Bahwa :             =

2log 8 – 1/2log 0,25 + 3log  + 2log 1   = 2log 2 + 3log  → alog  = n .  alog b

                                                                        = 1 + ( -3 )

                                                            = -2      ( A )


Tidak ada komentar:

Posting Komentar

Pembahasan Soal Vektor

01.Diketahui vektor v = [-7 8] dan A(1,-2). jika |AB|=|v| dan AB=-v, maka koordinat titik B adalah... V = ( - 7 + 8 ) | AB | = | ...